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Time-developing turbulent boundary layers over an isothermal flat plate at free-
stream Mach numbers of 0.3 and 0.7 are computed using an explicit finite-difference
method on structured multi-block grids. The size of each block is adjusted depending
on the dimension of the largest structures present locally in the flow. This alleviates
the cost of calculations in which the wall layer is resolved, and may result in substan-
tial savings of memory and CPU time, if several layers are used. In the calculations
presented the near-wall region is computed using a domain with a spanwise length
L =820, which is sufficient to contain several streaks. This grid block is repeated
periodically in the spanwise direction. The outer layer, which contains larger struc-
tures, is computed using a domain that is twice as widge=£ 1640). Although the
flow at the interface between the blocks has a periodicity length determined by the
inner-layer block, within a few grid points longer wavelengths are generated. The
velocity statistics and rms intensities compare well with single-block calculations
that use substantially more grid pointse 2000 Academic Press

1. INTRODUCTION

Many technological applications involving the interaction of a fluid stream with soli
boundaries result in the formation of turbulent boundary layers. For this reason, turbul
boundary layers have been considered to be one of the mostimportant “building block” flc
and have been the subject of extensive experimental, theoretical, and numerical studie

The solid surface produces complex temporally and spatially varying flow structur
which typically have very small time and length scales in the near-wall region as compa
to the overall flow scales. In incompressible flow turbulence consists of dynamically reg
erating coherent structures [1]. Near the solid surfateq30, wherezt = zo,, U, /1y, iS
the distance from the solid surface in wall units,= (z,,/p.,)*? is the friction velocity,

7, the shear stresp,, the fluid density ang.,, the viscosity at the wall], longitudinal flow
structures (streaks) are observed that have widths ranging between 20 and 80 wall
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and lengths that can exceed 2000 wall units. Typically, the low speed streaks are sp
about 100 wall units apart in the spanwise direction. There is substantial evidence tha
streaks are generated by vortical structures, such as streamwise or quasi-streamwise Vc
and “horseshoe” or “hairpin” vortices, whose dimensions scale in wall units. The turbule
motion due to these eddies is responsible for much of the Reynolds stress and turb
kinetic energy production in boundary layers.

The region extending from the wall 10 ~ 100 encompasses the most active zone, insof:
as the production of Reynolds stress is concerned. In the logarithmic layer at approxime
zt =100, there is no evidence of the streaky structures that were present atlocations nea
the wall [2, 3]. On the other hand, flow-visualization experiments and numerical simulatic
show that the turbulence in the outer layer, especiallyfér> 0.5 (§ being the boundary
layer thickness) is intermittent, with large-scale structures interspersed between regior
irrotational flows. The scale of these structures is larger than that of the turbulence in
inner layer, although these eddies are often composed of fluid that was ejected from
near-wall region [2]. The highly irregular interface between the turbulent and non-turbule
flow exhibits three-dimensional bulges on the scalelmfth in the streamwise and spanwise
directions, and narrow entrainment eddies, as observed by Robinson [1].

The different length scales of the turbulent eddies in the inner and outer layers can pc
significant challenge for numerical simulations that resolve the energy-carrying structu
such as direct and large-eddy simulations of turbulence. Chapman [4] and Reynolds
studied the grid requirements necessary to resolve the turbulent boundary layer. In the
layer, the turbulent eddies scale withTo resolve such structures it is necessary to use
grid-spacing scaled in outer unitax; /6. The number of grid points required to resolve
the outer layer in each direction §j =L;/Ax ~ L;/8 (wherelL; is the length of the
computational domain). Assuming that the outer region begins at some fixed fracipn c
and that the boundary-layer thickness scalesRige®? (whereRe= U, | /v is the Reynolds
number based on the free-stream velodity,, and a reference length,of the same order
as the computational domain sizg), itis easy to verify that the total number of grid points
required to resolve the outer layer of an attached turbulent boundary layer is proportic
to R&4, sinceN; ~ Ré?, N, ~ Ré2, andN; ~ R€ [4].

Since the inner-layer structures scale in wall units, the grid spacing in wall nifs=
AX;ju, /v, must be kept constant. This results in a number of points in each direction giv

by
L; Li lUs U, 1 L C
N=— =" =F o U _ +7'Re‘/7f~Relfa’ (1)
AXi Axiu; | v Uy  AX" | 2

where it is assumed th&; ~ Re %, Typical values ofr are in the range ~ 0.1 — 0.125,
giving a total number of grid points that scales like= N; N, N3 ~ Re®.

These scaling arguments dictate the size of computational grids that must be use
numerical simulation methods that resolve the energy-carrying turbulent flow structures
direct numerical simulations (DNS) all of the relevant structures are resolved, down to
smallest scales of motion, and no modeling is used. In large-eddy simulations (LES), c
the energy-carrying structures are computed accurately; the small, subgrid, scales, w
are more isotropic and drain energy from the large scales through the cascade pro
are modeled. LES can result in significant savings over DNS, in terms of computatio
costs, especially when no solid boundaries are present: if the grid size corresponds
wavenumber in the inertial region of the spectrum, the resolution required by LES becot
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independent of the Reynolds number. When the energy-carrying structures are Reyn
number dependent, as is the case in the near-wall region of a boundary layer, the
of the calculations is again affected by the Reynolds number, and is driven by the inr
layer resolution requirements. Although significant savings can be achieved over DNS,
application of LES to high Reynolds number external flows is still expensive.

One possible approach to bypass this limitation in LES is to model the wall layer entire
Assuming that the near-wall layer is in equilibrium, approximate boundary conditions 1
the wall stress can be derived using the standard logarithmic law [6—8]. Balaah$9]
introduced an alternative approach employing boundary-layer equations in attached che
and duct flows, and Cabot [10] applied this method to the separated flow behind a s
Modeling the wall layer can allow the extension of LES to flows at very high Reynolc
numbers, but only at the expense of the added empiricism introduced by the approxir
boundary conditions. Thus, wherever wall models do not give sufficient accuracy, the ni
wall layer must be resolved.

In computational fluid dynamics there are different ways of discretizing the physic
domains. Based on the connectivity, the grids can be classified as structured, unstructure
multi-block. The most straightforward approach is the structured grid, in which connectiv
information is not needed explicitly so that each mesh point is identified by indices, &
the neighbors are known. While a structured grid is simple to implement and allows e
control of the order of accuracy and conservation properties of the scheme, it can re
in a large number of points in regions where they are not needed. In a boundary la
for instance, the spanwise and stremwise spacings need to be nearly constant, to s:
the inner-layer resolution requirements discussed above. However, in the outer layet
grid spacing specified by the inner-layer resolution requirement results in an excessi
fine mesh. For example, in LES calculations of channel flow, Piomelli [11] found that t
grid size that corresponds to the smallest resolved structures which was barely beyon
energy-carrying range of the spectrum in the near-wall region, fell in the decaying reg
in the outer flow domain. Thus, for all practical purposes, the simulation was a DNS in 1
core of the flow. Multiple nested grids of varying resolution, as presented in [26], can a
be used to resolve the near-wall motions more efficiently. Such an approach require
inter-grid communication algorithm to advance the solution on the different meshes.

Unstructured grids allow for a local flow-dependent grid adaptation to improve the act
racy of the computation without incurring the penalties associated with global refineme
Although unstructured grids are the most flexible tool to address resolution issues, t
have not yet been applied to DNS and LES very extensively, due to their higher cost,
to the difficulty in achieving high order of accuracy.

Multi-block grids, also called “macro-element” or “composite” grids, aim at combining
the advantages of structured and unstructured meshes. They are based on the partition
the physical domain into a number of subdomains (“blocks” or “macro-elements”). On t
macro-scale, the grid is composed of unstructured blocks, while within each macro-elem
either an unstructured or (more commonly) a structured mesh can be used. Although
flexible than fully unstructured grids, this approach can handle more complex geometr
more efficiently, than the structured-mesh method. Furthermore, it can be extended to p
lel algorithms in a straightforward manner. One disadvantage of this method is the fact:
at interfaces information needs to be exchanged between blocks. This may require iter:
solution of the governing equations in each block (if the solver is implicit), interpolation (
the grid points in the two blocks do not coincide), and may affect the conservation proper
of the scheme.
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Despite those shortcomings, by varying the size and resolution of the subdomain
multi-block method can efficiently resolve flow fields characterized by multiple lengtl
scales with fewer grid points than a simply connected single-block structured grid. O
block-structured (or unstructured) methods are feasible for DNS and LES of high Reynol
number turbulent flows, since they allow the fine-grid region to be restricted to the int
layer, and the mesh to be coarsened in all directions in the outer flow. The Reyno
number dependence of the number of mesh points is still valid, as shown by Kravche
et al.[12], who performed calculations of a turbulent channel flow using a B-spline-bas
block-structured algorithm, and recovered Chapman’s predictions [4].

The strong Reynolds-number dependence of the number of required grid points is dt
the fact that the entire computational domain is discretized with a grid spacing that scale
the very small inner variables. In principle, the inner layer does not require a computatic
domain as large as the outer one. Jimenez and Moin [13] investigated the “minimal cha
flow unit” and concluded that a computational domain that spans approximately 2°
350 wall units in the streamwise direction and 100 wall units in the spanwise directior
sufficientto sustain turbulence in plane-channel flow. Thus, a computational domain of tr
dimensions contains a sufficient number of turbulent structures (hairpins, quasi-stream
vortices, etc.) to allow the dynamic cycle of generation and destruction of such eddie
take its natural course.

A possible way to decrease the cost of the calculation of the inner layer in flows tl
are homogeneous in one direction is to use a nearly minimal flow-unit in the near-w
region that is repeated periodically, and a larger computational domain in the outer rec
(Fig. 1). Inthe spanwise and wall-normal directions, the “inner-layer unit” (ILU) would hav
constant dimensions in wall units. Therefore, its size (in outer variables) would scale |
Re!, and it would require a constant number of grid points in the spanwise and wall-norr
directions. The number of points required to resolve an ILU would be proportioRafto
since the streamwise length of the ILU is constant and the mesh in that direction still ne
to be refined as the Reynolds number is increased. As the Reynolds number increase
physical dimensions of the inner-layer unit would decrease, and the unit would be replice
as many times as necessary to match the outer flow domain (Fig. 1b). For flows that
homogeneous in two directions (such that the ILU can be repeated in the streamwise
well as in the spanwise, direction), the cost of the ILU computation becomes indepenc
of Reynolds number.

If one layer of ILUs interfaces directly with the outer layer block, this technique ce
result only in an alleviation of the cost of the simulation. For very high Reynolds numbe
in fact, there would still be a matching region between inner scales and outer scales inw
the local turbulent structures scale like the distance from the wall; in this layer, the num

(a)

4
h~&Re}
s

FIG. 1. Sketch of the multi-block structure in the cross-plane with “inner-layer units.” The flow is out of th
paper. (a) Low Reynolds number; (b) intermediate Reynolds number; (c) high Reynolds number.
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of points would be proportional to

Lo fby 5
N~/ / / — dzdydx~ Ré. 2)
o Jo JcrelZ

This would still require the grid size in the outer layer to be a strong function of the Reynol
number, and the cost to be asymptotically proportiondéb approximately. This might
still be acceptable for moderate Reynolds numbies f O(10°—10%], but for very high
Recalculations, several layers would have to be employed (as sketched in Fig. 1c), v
progressively increasing width and length, in order to achieve substantial savings. T
could make the cost proportionalRe(or log Refor flows homogeneous in two directions)
and be extremely beneficial for higkecalculations.

The feasibility of the proposed method hinges on the interface between the inner-layer
outer-layer domains. The largest eddy present at the interface is determined by the si:
the ILU, which introduces a characteristic periodicity length into the flow. However, if son
non-periodic perturbation is presentin the initial conditions, lower modes (larger structur
will be generated that eventually destroy the periodicity. There will be an adjustment la;
in which the flow is still characterized by the periodicity length imposed by the inner-lay
unit. If the thickness of this layer is small, the proposed approach may be feasible.

In this study the feasibility of the multi-block approach proposed above will be teste
with special emphasis on the periodicity issue mentioned above, and on the contin
properties of the solution at the interface. The test-case chosen is a wall-bounded flow
two directions of homogeneity, namely a temporally developing boundary layer. This fl
was chosen because it contains many of the features of importance in a spatially develc
flow, which is technologically more important, but does not require special treatment
the inflow and outflow conditions. Single-block LES calculations were performed at tv
Mach numbers, and the results are compared with those obtained using the inner-|
unit approach. To separate the errors due to the periodicity of the inner layer from
numerical errors arising from the use of multi-block grids (interpolation, interface betwe
subdomains) the calculations were carried out using an explicit code, with one-to-
correspondence between the domains. Studies of real flows would probably require |
conforming meshes, as well as several layers of progressively larger ILUs. With the s
aim, a well-established subgrid-scale model is used, and no attempt is made to employ |
advanced, and perhaps more accurate, models.

In the next section, the problem formulation, numerical method, and subgrid-scale mc
used are described. Then, computational results are presented and discussed. Finally,
conclusions are drawn in the last section.

2. PROBLEM FORMULATION

2.1. Governing Equations

The set of differential equations in Cartesian coordinates satisfied by a viscous flov
the absence of body forces reads

ap

ad
+-% (puy=0 3
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apU; ad

8tI * ai)ﬂ(pujui + pdji —oji) =0, )
opE 0
T T o LB P — it ] =0 ®)

where the summation convention applies to repeated indices. piésehe fluid density,

u; the fluid velocity component ifi direction, E = € + ukux/2 is the total energy per unit
mass (where = C, T is the internal energy per unit mass, is the specific heat at constant
volume, andr the temperature) is the thermodynamic pressurs; is the viscous stress
tensor, andj; is the conduction heat flux. In the present work, the fluid is assumed to be
ideal gas with constant specific heats (whose raticisl.4). Thus, the pressure is related to
€ by the equation of state= (y — 1) pe. The viscous stress tensor and the conduction he
flux vector are expressed as functions of the strain-rate t&h)ser(ou; /9x; + du;/9x)/2
and the temperature gradient, according to

8ij oT
oij = 2( - %)HSU; g =—ko (6)
j

where i is the molecular viscosity, ankl the thermal conductivity. The viscosity is
assumed to depend only on temperature and is calculated using the Sutherland law

T +Ts/T\Y?
- ) 7
" ’“T+T5(Tr) @)

wherey; is the reference viscosity at a reference absolute tempefgturbe thermal con-
ductivity k is computed assuming a constant molecular Prandtl nuiberC . /k =0.72
and the constaris is assumed to be equal to 110.4 K [14].

2.2. SGS Modeling

The governing equations for LES are obtained through the application of a spatial fil
to the Navier—Stokes equations to separate the effects of the (large) resolved scales fro
(small) subgrid-scale motions. The filtering operation is written in terms of a convoluti
integral as

Fix.t) = /D G(x— & A) (€, 1) de, 8)

whereD is the flow domain ané is some spatial filter for which
/Gu_a&mgzl (9)
D

The filter introduces a scal®, the filter width, that represents the smallest turbulence sca
allowed by the filter itself. In the present calculations, the tophat filter is used in all thr
directions. For compressible flows, it is advantageous to use Favre-filtering [15, 16]
avoid the introduction of subgrid-scale terms in the equation of conservation of mass
Favre-filtered variable is defined ds= pf /p. The resulting Favre-filtered compressible
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Navier—Stokes equations of motion are given by

gy 9
— 4+ —(pl;) =0, 10
at + 8Xj (p ]) ( )
J _. J0 . . _ - dTijj
a(pui)-%rxj(pujui + p&i; — i) = —afxl; (11)
0 _~ d o~ . N d 1
ﬁ(pE)-i-a—Xj[(pE-l- )Uj—GjiUi-l-qJ']:—a—Xj Ejj_Dj‘f'J/Cij . (12)
Here,
. o 2. = . ~oT
Gij = 20Sj — 3 8§ij Sk, G = _ka_x,-’ (13)

where.{ is the molecular viscosity, aridis the thermal conductivity corresponding to the
filtered temperaturd . The effect of the subgrid scales appears through the SGS stres
7ij, the SGS heat fluR);, the SGS turbulent diffusiof.7; /dx;, and the SGS contribution
to viscous diffusionpD;j /0X;; these quantities are defined as

Tj = p(Uiu; — Gid)) (14)
Qj = o T — ;1) (15)
Jj = p(UjUkUx — Tj UcUy) (16)
Dj = o34 — & {;. 17)

The equation of state has been used to express the pressure-diffusion correlation in t
of Q;. Itis also assumed here that

w(MS; = u(M S, (18)

and an equivalent equality involving the thermal conductivity applies. This assumptior
supported by tha priori study by Vremaret al.[17].

In the present work, the SGS stressgsand heat fluxQ; are modeled using the plane-
averaged dynamic eddy-viscosity model [18, 19] in the form derived by Moéh [20] for
compressible flows. Thg; andD; terms are neglected. The latter assumption is supporte
by thea priori results of Mantn et al. [21], who examined isotropic turbulence decay at
turbulent Mach number of 0.52. In their study, however, the divergengg wfas found to
be a significant fraction of the divergence of the SGS heat flux; thus, the first assump
may not be justified for high turbulent Mach numbers. In the present simulations, howe
the turbulent Mach number is significantly smaller than that examined by Vretan
[17] and Marth et al. [21] (it is of the order of 0.03-0.1), and the present assumption |
acceptable, at least to test the validity of the multi-block approach.

2.3. Numerical Scheme
The general conservation laws can be expressed as

W _ 0 0RO,

19
at an ( )

)
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U e R%isavector whose components are the independent variables, anBlj — Fqj € R®
is the total flux (convective and diffusive) in tixg direction. They are defined by

o Yy 0
U=<pl 3, Fej = < pljli + pdji », Faj = Gii — Tji : (20)
pE (PE + p) Gjiui — G — ¥CyQj

S =S8 — &y is the global spatial differential operator. Equation (19) is discretized by a
proximatingU as Uir_‘j,k at location(i Axy, j Axz, kAx3) and timet" =nAt, and solved
numerically.

To resolve properly the details of the boundary layer, the grid points are clustered r
the wall in the wall normal directiorg] while the spacing irx andy is kept uniform. The
numerical solutions are computed on a uniform grid in computational sgageq). The
transformation relations from physical spagey, z) to the computational space are

Xx=§& y=n  z=2¢) (21)
and the wall-normal derivatives are computed in the regiispace, e.g.,

o ot Rt _atd ot an?
9z  9cdz’ 922 9dcdz2 92\ dz '

The Favre-filtered Navier—Stokes equations (10)—(12) thus become

U 9F 3G aHd:r 9Fy 3Gy dHgac
e I I B A LI s AL e o) 22
ot Yo "oy Tacdz e an  ac dz (22)

whereF = F¢1, G = Fe, H = Fe3, and a similar notation is used for the diffusive fluxes.
LetLy, Ly, L, be the dimensions of the computational dorrim thex, y, zdirections,
respectively. For the discretization Qf let

Xi = & AX E=i—-1,i=1...,nx (23)
Yi=ndAy (j=]-1,j=1...,ny (24)
1— o
2, =0, 2k = 1 Azy (ik=k—-1,k=2,...,nz (25)
—

whereAx = Ly/(nx—1), Ay=Ly/(ny—1), andnx, ny are the number of grid points in
thex, y directions, respectively. A Cartesian non-uniform grid witpoints stretched with
geometric progression in the wall-normal direction is used; Az, 1/ Az is the constant
ratio of successive intervals, withz, = 7,1 — z.

The numerical approximation to the spatial operd&gu) is

dg
i,j,k(d_z)z_zk‘| ’ (26)

wheresf /8% denote a finite difference operator acting brvith respect tog.

n §G
ik Oy

sH

SF
i,j,k (SZ

Sc(u) = - [5)(
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The approximation of the convective flux derivatives in the Navier—Stokes equatic
is a key element of the spatial integration. Here, the discrete operator calculations
independent irx, y, andz directions. For exampl&,F /5X|; j « is calculated component-
wise holding indice$ andk fixed, i.e., along a slice of data in tlkedirection. A fourth-order
accurate scheme is used, in which the first derivative is constructed as the weighted su
a central-difference method and an upwind-biased method. This approach yields a sct
with good modified wavenumber performance and a small level of dissipation at hi
wavenumbers. Denoting; j x as the discrete approximation of the convection fioat
(i AXq, ] AXz, KAX3), thex-direction derivative is given by

SF 11 2
x| " ax LBO(FH-Z,LK —Fi2j0) — g(fisaje = F-1j0)
],
64
+ ZS(FH-%,],k - Fi—%,j.k) ) (27)

where, in order to find a 4th-order solution, it is required that
Firajux=FUissj0) + O(AX®). (28)
The Fi11/2 )k are calculated by an upwind-biased method; the Rus decomposed as
F(U)=F*U)+F ), (29)
whereF*(U) = A*(U)U and A*(U) are such thah = At + A~ and+A*(U) have real
and non-negative eigenvalues. The flux-vector-splitting method of Steger and Warmn
[22] is employed. The high-order accuracy of the scheme is achieved by evaluating €

component of the conserved variables at cell interfakes, ; « with a 5th-order accurate
spatial interpolation of the node values. The resulting numerical flux function is

_Et -
Fiiijx= Fi+%~,i,k + Fi+%,j,k’ (30)
where
A|++1,J',k
Ry = —1aa @Uia ik — 20011+ 90U, i+ 60Wisn i~ SUiz 0 (3D)
B Aij-%,j,k
Fisin= 128 (=5Ui—1,jk + 60U jk +90it1 jk — 20Uis2 )k + 3Uitzju). (32)

All the values required for the evaluation of the Jacobian matw¢"§§/2,  k are interpo-
lated across six grid points. For example, the speed of s@jiglcalculated as

1 k= (Ba-2jk —258-1jk + 1508 j i + 150811k — 25842,k + 3813k (33)

The termssG/8yli jx and §H/58z|i j« in (26) are treated similarly. The modified
wavenumber properties of this conservative scheme are comparable to those of the
conservative method of Rai, Gatski, and Erlebacher [27] that was used for the simula
of a spatially evolving compressible boundary layer.
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For the compressible Navier—Stokes equations (19) in a conservation-law form,
second-order derivatives appear as first-order derivatives of the transport flux \egtors
These terms can be discretized in many ways, independendlfFfox;. Here, the dis-
cretization of the diffusive terms is carried out using a fourth-order-accurate centered
ference method. For example, the first and second derivativéswith respect tax are
given by

of —fiyojk +8fipejk —8fi_yjk+ fiojk 4

AN I LT J I Ik oA 34
(8x>”—qk 12AX +0(ax) (34)
92 f —fiyojk +16fi 11k — 30 jk +216F_1jk — fiojk 4

1) = 3t 3t 3t 3t Ik L o(axt). (35
<8x2>i’j K 12Ax? +0axD. (39

They-derivatives are obtained in the same manner. Owing to the treatment of the visc
terms, the formal spatial accuracy of the global scheme is fourth order.
Replacing the spatial derivatives with the above approximations yields a set of the ec
tions of the form
dUi,j’k
dt

= (SIUM®1}i ik (36)

whereS is a 4th-order discrete approximate to the spatial operator in (19). Equation (36
a set of time-continuous coupled ordinary differential equations and any integration sche
applicable to ODEs may be used. In general, explicit schemes are limited to a short time-
owing to stability limitation; however, the implementation of the discretized equations ir
multi-block format (see below) is simplified when an explicit time advancement is adopt:
For this reason, an explicit third-order low-storage Runge—Kutta method [23] was used
these calculations.

The fourth-order finite-difference scheme described above requires modifications for
treatment of the non-periodic boundaries. The code adopts a fourth-order central differ:
ing at pointsk =3 andk =nz— 2 and reduces to second-order central scheme at poir
k=2 andk =nz—1 for the convective and diffusive terms. Care was taken to maximiz
the accuracy of the method at the near-wall points, while maintaining the stability of t
scheme; higher-order extrapolations make the scheme unstable [28].

2.4, Initial and Boundary Conditions

The initial condition was obtained from a single-block large-eddy simulation of tt
incompressible turbulent flat-plate boundary layer. Uniform density and temperature fie
were specified. The Reynolds number viRes: = 55U~ /v~ 1110, where; is the initial
displacement thickness. The size of the computational domain wa§ %3053 x 2253
in the streamwise, spanwise, and wall-normal directions, respectively; these dimens
corresponded to 6570 1640x 1230 wall units.

Periodic boundary conditions were used in the streamwise and spanwise directions,
isothermal no-slip conditions were specified at solid surfaee. The plate temperature
T, was set equal to the free-stream temperalyeThe wall density was computed from
conservation of mass at the wall,

dp _ [0(pw)
at az |,

37)
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and, along with the specified wall temperatdrg was used to calculate the wall pres-
sure using the equation of state. The wall-normal derivative in (37) was approximated
a second-order-accurate formula. At the top of the domain, the normal gradients of
conserved variables were set to zero.

The use of periodic boundary conditions implies that the boundary layer develops
time, rather than in the streamwise direction. To simulate properly a spatially develop
boundary layer, either inflow—outflow conditions must be used, or some other approxirr
technique, such as the “fringe method” [24] must be adopted. Since the purpose of
present calculation is to test the ILU concept, it was preferred not to introduce additio
uncertainties. Although this configuration is not the exact equivalent of a flat-plate bound
layer, it contains many of the important physical features of that flow (inner- and out
layer scalings, for instance). Thus, it constitutes a consistent test case for the compal
of single- and multi-block calculations.

2.5. Block Partitioning and Grid Distribution

Two types of calculations were performed; first, single-block computations were ¢
ried out as baseline cases; then, multi-block computations were performed to valic
the proposed approach. In the single-block cases 48 x 48 grid points were used in
the streamwise, spanwise, and wall-normal directions, respectively, to discretize a dor
whose size was equal to that of the initial field (32& 305% x 2257); this resulted in an
initial grid resolutionAxg” ~ 103 Ay ~ 34, andAz;, ,=0.15 (a subscripb indicates
that the initial friction velocity,u. o, and displacement thickness,, were used for the
normalizations).

The multi-block calculations were carried out using the arrangement shown in Fig.
Three rectangular subdomains were used, with conforming grids (the grid lines w
continuous across the interfaces). Interface and boundary conditions were specifie
using four “ghost points” to ensure that fourth-order accuracy was achieved even at
sub-domain interfaces. These additional cells are filled at the start of each time step |

E4 A

FIG. 2. Multi-block arrangement for 3D turbulent boundary layer.
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TABLE |
Grid Resolutions
zr =30 z; =104
Inner layer 64x 24 x 24 64x 24x 32
Outer layer 64 48 x 24 64x 48 x 16

in a manner that depends on the geometrical (internal or external interface) and phys
(wall, freestream, periodicity) nature of the boundary condition.

The inner layer was discretized using two subdomains, Blocks 1 and (1) in Fig. 2; the la
is purely virtual and is a periodic copy of Block 1. The inner-layer unit had the same dime
sion in the streamwise direction as the single-block calculation and extended up to a he
Zi, which could be varied. Its spanwise size vtho =820. The dimensions of the |LU
were significantly larger than those of the “minimal flow unit” of Jimenez and Moin [13] an
were sufficient to contain several near-wall structures. The outer layer was discretized u
a single block (Block 2 in the figure), whose dimensions wiefg = 6570 L , = 1640;
in the wall normal direction, it extended fromj to L;fo =1230. Two values of; were
tested: in one case, the interface was placed in the buffer regiafi,-a80, in the other,
in the logarithmic layer ar; =104. The grids used for the two cases are summarized
Table I.

For the multi-block calculations, the initial condition had to modified to ensure regulari
at the interface between the virtual inner-layer block and the outer block. This was achie
by assigning a generic varialdeat pointy + L /2 to be the average of the same variable
in the single-block calculatiorgs, at pointsy andy + Ly /2. An exponentially decaying
function ofz was used to decrease the contribution of the ppias$z increased,

L
qX,y+Ly/2,2,00 =[1 - g(2]ds(X, ¥, 2, 0) +9(2) Gs (x, y+ 7y z, 0>
VO<x=<Lyx,0<y=<Lly/2z<z=<Ll, (38)

whereg(z) is defined as

(39)

9(2)

tanh{ﬁ(Z _ Z”)] .

1
"~ tanh(B) L, —zs
The choice of the interface locatiap and of the parametet, which controls the thickness
of the region over which the function transitions from 0 to 1, may affect the results signi
cantly, as will be shown later.

3. RESULTS AND DISCUSSION

Large-eddy simulations were carried out for two values of the Mach nurivhges= 0.3
and M, =0.7. The mean flow temperature and density were chosen fB.Je 300 K
and p,, =1 kg/m®. In the viscosity law,T, =273 K, and the reference viscosity was
wr =1.71%x 1075 kg/(m-s) andu, =3.99x 10-° kg/(m- s) for the two calculations, re-
spectively. The Reynolds numbers per unitlen§¥/(; = 5.66 x 10 m~1) was maintained
constant while the Mach number was changed.
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FIG. 3. Time history of non-dimensional boundary layer displacement thickness and shear stress at the \
— M=03;---,M=0.7.

As mentioned in Subsection 2.4, the adoption of periodic boundary conditions impliest
the boundary layer is growing in time, rather than in space. Figure 3 shows the time-evolu
of the displacement thicknes$ and wall stress,, for the single-block calculations. The
simulation was stopped when the boundary layer thickness became comparable witt
height of the computational domain, after approximately 2.5 LETOTs. Over this period, 1
wall stress decreased by half, and the friction velocity by 30%; thus, the Reynolds num
based ord*, u, andv ranged from 55 to 45 for the low Mach number case, and from 55t
47 in the high Mach number calculation.

Figure 4 shows the profiles of the plane-averaged mean velacity, (u) /u, and trace
of the resolved Reynolds stress&g) = (u'u’) (whereu” = U; — (U;) and(-) indicates an
average over the two homogeneous directions) obtained from the single-block calculat
at the times correspondingRe- = U,8* /v = 2230. The instantaneous friction velocity is
used to normalize both quantities. A well-defined logarithmic layer is observed in both ca:
although its intercept is higher (approximately 7, instead of the standard value of 5.2) du
the low resolution used, which results in an overestimation of the thickness of the wall lay
and in alower value of the wall stress. Correspondingly, high values @§?) are observed.

Several multi-block calculations, whose parameters are summarized in Table II, w
compared with the single-block calculations. The multi-block calculations differed by tl
height of the interface between the two layers, and by the thickness of the transition I
(i.e., by the paramete#). In addition, in two of the calculations the initial condition was
modified by adding a random noise component to match the initial plane-averaged Reyn
stress distribution. The weighted-average procedure described in Subsection 2.4 resu
a defect in the plane-averaged Reynolds stresses equal to

Auiuf) = 29(2)[1 — 9(@)](u{'u’). (40)
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FIG. 4. Mean velocity profiles and trace of the resolved Reynolds stress®s.at 2230. LinesM =0.3;
lines with symbolsM =0.7.

To correct this defect, a procedure similar to that used by latiadl [25] to generate inflow
conditions for spatially developing simulations was followed. At each vertical locatio
three sequences of random numbers with zero mean, unit variance, and zero covar
with the other two distributions were generated. These uncorrelated random fluctuat
were then scaled and combined to matetui'u}). The resulting signals were added to
each component of the velocity field. This procedure has two effects: first, it gives an ini
condition whose second-order statistics match exactly those of the single-block calculat
second, the random fluctuation scrambles somewhat the initial periodicity of the flow at
interface; this was expected to be beneficial in decreasing the thickness of the trans
layer. As will be shown later, this correction proved ineffectual because the uncorrela
random noise was rapidly dissipated.

In Fig. 5 the mean velocity profiles after 1 LETOTSs are shown. Practically no differen
can be observed between the various cases at this time. The same behavior is obtair
later times for this case, as well as for the higher Mach-number case.

TABLE Il
Summary of Simulation Parameters

Case M zi, Parameters

003 0.3 — Single block

103 0.3 30 Thick transitiond= 15)

203 0.3 30 Thin transitiong= 90)

303 0.3 30 Thin transitiond= 90), random noise correction
403 0.3 104 Thin transitiond(= 90), random noise correction
007 0.7 — Single block

307 0.7 30 Thin transitiond= 90), random noise correction
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FIG.5. Mean velocity profiles au, ,/8; = 1for M = 0.3. —, single block; - -, z; , ~ 30 wide transition; ---,
z; , ~ 30 narrow transition-——,z; , ~ 30 narrow transition and random najse- —, z; ,~ 104 narrow transition
and random noise.

Figure 6 shows the rms turbulence intensitigsys = (u/'2)/2, for the low Mach-number
case attu, /85 =1. The defect due to the intialization procedure is particularly evider
in the spanwise fluctuations (Fig. 6b), but by ~ 60 the fluctuations are again fairly
accurate. The effect of the initial conditions persisted for the entire period studied; e
after 2.5 LETOTs a small defect was observed. Since the calculation had to be stopped a
time, it could not be verified whether (as one would expect) in a steady-state case the
would eventually lose the memory of the initial condition. In the wide-transition calculatic
the defect extends to a thicker region (roughly, 38" < 150). Overall, the most accurate
results were obtained when the interface was placed in the logarithmic region.

The addition of the random noise, as mentioned before, did not improve the results:
though attu, /83 = 0 the rms profiles match exactly those of the single-block calculation

4.0 ' | |

30 | o
20 /> —
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FIG.6. Turbulence intensities &ti. ,/5* =1 andM = 0.3. (a) Streamwise, (b) spanwise, (c) wall normal. —,
single block; - -, zf , ~ 30, wide transition; — -z , &~ 30, narrow transition; — - -/, ~ 104, narrow transition.
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FIG.7. Spanwise turbulence intensitytat, ,/8; = 1 andM = 0.3; z; , ~ 30. —, narrow transitiorD, narrow
transition and random noise.

the random noise component is quickly dissipated. For examitle, gts; = 1 calculations
with and without random noise give the same results, as shown in Fig. 7.

The resolved Reynolds shear stresgpu”w”) normalized byr,, is shown in Fig. 8 for
the M = 0.3 calculation. The differences observed in the rms intensities are more evid
here. The calculations in which the interface is in the buffer layer underpredict the str
throughout the buffer and logarithmic regions; more accurate prediction of the stresse
obtained when the interface is in the logarithmic region. The maximum contribution
subgrid-scale shear stresses on the resolved ones is about 8% of the shear stress at th

At the higher Mach number (Fig. 9), similar results are obtained. However, the agreen
is better, even for an interface in the buffer layer. This result may be due to the fact tha
higher Mach number the convection effects are more significant, and stronger non-lir
interactions scramble the initial periodicity more rapidly.

The first- and second-order statistics obtained using the multi-block approach wit
periodic inner-layer unit compare well with those of single-block calculations at both Ma
numbers examined. The main effect of the interface on the results is due to the initializa
procedure, which results in a Reynolds-stress defect that was not recovered by the tim
calculation was stopped. One could conjecture that if the flow were statistically steady,
enough time were given for the nonlinear interactions, the defect would be completely fil
in; the high-Mach number results support this argument. In any case, when the inter
is located in the logarithmic layer this defect is rather small, and good agreement with
single-block calculations is achieved.

The effect of the interface periodicity on the turbulence structure in the outer lay
remains to be investigated. To this end, define the two-point autocorrelation of an arbitt
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FIG. 8. Resolved Reynolds shear stress r=0.3. (a) tu,/§* =0.4; (b) tu,/8*=2. —, single block;
-+, Zf ,~ 30, wide transition; ---z{ ; ~ 30, narrow transition- - —, z; ; ~ 104 narrow transition.
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FIG. 10. Two-point spatial autocorrelation functid®,, attu. ,/8; =1 for M = 0.3. (a)z} ~ 10, (b)z& ~ 35,
(c) z5 ~167. —, single block; - -, z; ,~ 30 wide transition; ---z; ,~ 30 narrow transition; — - —z; ,~ 104
narrow transition.
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fluctuating velocity componemnf’,

@"x,y,zOg" (X, y+r,z 1))
Q"(x,y, z;1)?) ’

Ryq(r, z ) = (41)
The streamwise-velocity autocorrelation is shown in Fig. 1tuat/és =1, and at three
distances from the wall (normalized using,). At zt ~ 10, the two-point correlation goes
to zero well before half of the sub-domain width, showing that the width of the ILU i
sufficient to include the widest structures present in the flow. Incidentally, the negative p
of the two-point correlation corresponds to an average streak spacirigo200, twice the
experimental value; this result is consistent with the high intercept of the logarithmic lay
and the thicker wall layer. Az} ~ 35 (one grid point above the interface), the periodicity
of the interface condition results in a secondary peak of the two-point correlatloyy at
(i.e.,r /6* >~ 14). This secondary peak is higher (approximately 0.93) for the thick transitic
case; for the thin transition, itis reduced to 0.83. In the outer laye}, &167 no correlation
can be observed for either interface.

To determine the thickness over which the periodicity effects are felt, Fig. 11 shows
value of the secondary peaR,.(Ly/2), as a function ot after 0.4 and 2 LETOTs. The
narrow-transition calculations have a very rapid decrease of the secondary peak: witt
grid points of the interface (about half a displacement thickness) the peak has decrease
75%. Most of the outer layer is not affected at all by the periodicity introduced by the ILl
The same behavior is observed in the correlations for the other velocity components.

Since the non-periodicity of the outer layer is essentially due to the initial conditions
is important to determine whether the flow tends to return to a periodic state or settles
a non-periodic one. To answer this question, the time development of the secondary |
is shown in Fig. 12. The thickness of the layer over which the secondary peak is signific
does not change fdu, /8 > 1, indicating that, after a fairly short transient, the flow doe:
indeed settle to a non-periodic state.

The rapid loss of periodicity can also be illustrated through the instantaneous contc
of the fluid-dynamic variables. In Figs. 13 and 14 the velocity contours are shown

FIG.11. Two-point spatial autocorrelation functidf,(L/2). (a)tu,/8* =0.4, (b)tu, /6* =2.—,z; , ~ 30,
wide transitionM =0.3; - - -, zf ;~ 30, narrow transitionM = 0.3; ---, z; , ~ 104, narrow transitionM = 0.3;
———,7f,~ 30, narrow transitionM = 0.7. The vertical lines represent the two interfaces.
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FIG. 12. Two-point spatial autocorrelation functioR,,(L,/2) for the M =0.7 case. —,tu,/§ =0.1,
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FIG. 13. Instantaneous velocity iso-contours fdr=0.3, tu,/8* = 1. z;  ~ 30, thin transition. (aj; (b) v;
(c) w. Dashed lines, virtual block.
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FIG. 14. Instantaneous velocity iso-contours fdr= 0.3, tu, /§* = 1.z}  ~ 104, thin transition. (al; (b) v;
(c) w. Dashed lines, virtual block.

the two values of the interface location. It is quite remarkable to observe the differer
in the structures between the two halves of the domain. The large structure observe
the v contours aty/8*~ 15 andz/8*~4 in Fig. 14b is one example of a completely
asymmetric eddy which must obviously result from the non-linear interactions between
wavenumbers presentinthe ILU and the longer wavelengths above the interface. Also nc
that the high- and low-interface simulations were started from the same initial conditio
thus one would expect a similar distribution of the turbulent eddies at corresponding tin
Such is the case; if Figs. 13 and 14 are compared, the large structures appear to be lo
roughly at the same place and have similar strength. For the different interfaces, s
temporal decorrelation is caused by the modification of the initial condition. In an unsta
flow such as this one, small differences in the initial conditions are amplified, and eventu
lead to a complete loss of correlation. However, the statistics should not be affected,
the case in the present calculation.

Another consequence of the modification of the initial conditions is due to the solenoi
character of the initial field. When the region corresponding to the ILU is removed, and |
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FIG. 15. Time sequence of the iso-contours of the pressure fluctuations (normalized byr M =0.3.
zf ,~ 104, thin transition. (aju. /8* = 0.01; (b)tu. /§* = 0.4; (c)tu./8* = 1. Dashed lines, virtual block.

velocity above it is replaced by the weighted average, the resulting initial field is no long
divergence free. This introduces a pressure disturbance at the interface between the v
and outer-layer blocks (Fig. 15a) which decays in time (Figs. 15b and 15c). After 1 LET(
the pressure contours for the interface in the logarithmic layer have decreased in magni
and are reasonably smooth.

When the interface is located in the buffer layer the situation is exacerbated by the
that in a boundary layer the pressure tends to propagate unchanged across the layer
forces a coupling between inner and outer layer in the portion of the calculation bount
by the virtual block. The ILU determines the pressure at the wall and the outer la)
eddies the structure of the pressure away from the wall. This mismatch between inner
outer layer pressure fields cannot be bridged when the ILU is very thin, and some leve
pressure disturbance remains throughout the simulation (Fig. 16). However, these pre:s
disturbances do not affect the velocity contours (shown at the same location in Fig. :
When the interface is placed further from the wall, the flow adjusts and smoother press
contours result.
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FIG. 16. Iso-contours of the pressure fluctuations (normalized,hattu, /6*=1. M =0.3, z; , ~ 30, thin
transition. Dashed lines, virtual block.

4. CONCLUSIONS

An approach for the treatment of the near-wall layer in turbulence simulations has b
presented that, in flows that have one direction of homogeneity, allows substantial sav
of CPU time and memory over conventional methods. This method uses computatic
domains whose size is determined by the local scaling. The inner layer is resolved by a.
domain (“inner-layer unit” or ILU) whose size is fixed in wall units. The ILU is then repeate
periodically as many times as required to match the dimensions of the outer layer ¢
domain, which is determined by the size of the larger eddies present in the core of the f

Multi-block simulations with an ILU that is extended periodically give good agreeme
with single-block calculations for first- and second-order statistics, especially if the interf
is located in the logarithmic layer. Placing the interface in the buffer layer, where much of
turbulent activity takes place, results in underprediction of the Reynolds stress magnitt
and spurious pressure fluctuations.

An important finding of this paper, that proves the feasibility of the proposed approal
is that the periodicity introduced at the interface between the inner and outer layers ¢
not spread outwards. Within a few grid points, larger structures are generated, and
correlation between the two halves of the domain is lost.

In the present study, only modest computational savings were achieved: the two mi
block calculations required only 25 and 33% fewer points than the single-block calculati
Increases of the Reynolds number would increase the savings, but only up to a point. Am
layer approach is required to reach higher Reynolds numbers. If non-conforming meshe
the type employed by Kravchenlkd al.[12], for instance, are used, such that the spanwis
and streamwise spacings of the outer-layers can be increased over those of the inner-
sub-domain, additional savings can be achieved. An estimate of the possible savings
be obtained if one considers the Kravchemkal. [12] calculation of plane channel flow
at Re >~ 4,000. If ILUs were used in the first three regions, each with a streamwise a
spanwise domain size that is half that of the next layer, only 15% of the points used origin:
would be required. If the domains maintained the same streamwise length, and were red
only in the spanwise direction, 27% of the points would be necessary.

As mentioned above, this technique requires the existence of at least one directio
homogeneity in the flow and may not be applicable in highly three-dimensional flov
However, there may be a range of intermediate configurations in which one could
periodically repeated inner-layer units in some regions of the flow only. To compute |
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flow over an airplane wing, for instance, it might be possible to use periodically repea
inner layer units away from strong sources of three-dimensionality (the wing root and
regions, the engine nacelles, etc.). Several layers, with increasing spanwise extent,

conforming meshes would also be beneficial. Furthermore, a multiblock approach coul
applied in the streamwise direction as well, joining narrower boxes to wider ones. Th
issues require further study.
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